From 10dd5dc7fef792b271d8fbbdf8222a12a910fe92 Mon Sep 17 00:00:00 2001 From: Justin Bedo Date: Mon, 6 Oct 2014 16:59:31 +1100 Subject: Initial implementation of EDSL and LP output formatter --- Math/LinProg/LP.hs | 88 +++++++++++++++++++++++++++++++++++++++++ Math/LinProg/Setup.hs | 2 + Math/LinProg/Types.hs | 106 ++++++++++++++++++++++++++++++++++++++++++++++++++ 3 files changed, 196 insertions(+) create mode 100644 Math/LinProg/LP.hs create mode 100644 Math/LinProg/Setup.hs create mode 100644 Math/LinProg/Types.hs (limited to 'Math') diff --git a/Math/LinProg/LP.hs b/Math/LinProg/LP.hs new file mode 100644 index 0000000..8670cdf --- /dev/null +++ b/Math/LinProg/LP.hs @@ -0,0 +1,88 @@ +{-# LANGUAGE TemplateHaskell, FlexibleInstances, ScopedTypeVariables #-} + +module Math.LinProg.LP ( + compile +) where + +import Data.List +import Math.LinProg.Types +import Control.Lens +import Control.Monad.State +import Control.Monad.Free +import Data.Maybe + +type Equation t v = (LinExpr t v, t) -- LHS and RHS + +data CompilerS t v = CompilerS { + _objective :: LinExpr t v + ,_equals :: [Equation t v] + ,_leqs :: [Equation t v] +} deriving (Eq) + +$(makeLenses ''CompilerS) + +instance (Show t, Num t, Ord t) => Show (CompilerS t String) where + show s = unlines $ catMaybes [ + Just "Minimize" + ,Just (showEq $ varTerms (s ^. objective)) + ,if hasST then Just "Subject to" else Nothing + ,if hasEqs then Just (intercalate "\n" $ map (\(a, b) -> showEq a ++ " = " ++ show (negate b)) $ s ^. equals) else Nothing + ,if hasUnbounded then Just (intercalate "\n" $ map (\(a, b) -> showEq a ++ " <= " ++ show (negate b)) unbounded) else Nothing + ,if hasBounded then Just "Bounds" else Nothing + ,if hasBounded then Just (intercalate "\n" $ map (\(l, v, u) -> show l ++ " <= " ++ v ++ " <= " ++ show u) bounded) else Nothing + ] + where + getVars eq = zip vs ws + where + vs = vars eq + ws = map (`getVar` eq) vs + + showEq = unwords . map (\(a, b) -> render b ++ " " ++ a) . getVars + + (bounded, unbounded) = findBounds $ s ^. leqs + hasBounded = not (null bounded) + hasUnbounded = not (null unbounded) + hasEqs = not (null (s^.equals)) + hasST = hasUnbounded || hasEqs + + render x = (if x >= 0 then "+" else "") ++ show x + +findBounds :: (Eq v, Num t, Ord t, Eq t) => [Equation t v] -> ([(t, v, t)], [Equation t v]) +findBounds eqs = (mapMaybe bound singleTerms, eqs \\ filter (isBounded . head . vars . fst) singleTermEqs) + where + singleTermEqs = filter (\(ts, _) -> length (vars ts) == 1) eqs + singleTerms = nub $ concatMap (vars . fst) singleTermEqs + + upperBound x = mapMaybe (\(a, c) -> let w = getVar x a in if w == 1 then Nothing else Just c) singleTermEqs + lowerBound x = mapMaybe (\(a, c) -> let w = getVar x a in if w == -1 then Nothing else Just c) singleTermEqs + + bound v = bound' (lowerBound v) (upperBound v) where + bound' [] _ = Nothing + bound' _ [] = Nothing + bound' ls us | l <= u = Just (l, v, u) + | otherwise = Nothing where + l = maximum ls + u = minimum us + + isBounded v = isJust (bound v) + +compile :: (Num t, Show t, Ord t) => LinProg t String () -> String +compile ast = show $ compile' ast initCompilerS where + compile' (Free (Objective a c)) state = compile' c $ state & objective +~ a + compile' (Free (EqConstraint a b c)) state = compile' c $ state & equals %~ (split (b-a):) + compile' (Free (LeqConstraint a b c)) state = compile' c $ state & leqs %~ (split (b-a):) + compile' _ state = state + + initCompilerS = CompilerS + 0 + [] + [] + +test :: LinProg Double String () +test = do + let [x, y] = map var ["x", "y"] + obj $ 1 + 5 * y + x + y =: (1 + x) + y >: (-5) + x <: 10 + x >: 0 diff --git a/Math/LinProg/Setup.hs b/Math/LinProg/Setup.hs new file mode 100644 index 0000000..9a994af --- /dev/null +++ b/Math/LinProg/Setup.hs @@ -0,0 +1,2 @@ +import Distribution.Simple +main = defaultMain diff --git a/Math/LinProg/Types.hs b/Math/LinProg/Types.hs new file mode 100644 index 0000000..d96fcb5 --- /dev/null +++ b/Math/LinProg/Types.hs @@ -0,0 +1,106 @@ +{-# LANGUAGE DeriveFunctor, FlexibleInstances, FlexibleContexts, UndecidableInstances #-} + +module Math.LinProg.Types ( + LinExpr + ,var + ,vars + ,varTerms + ,getVar + ,split + ,LinProg + ,LinProg'(..) + ,obj + ,(<:) + ,(=:) + ,(>:) + ,eq + ,leq + ,geq +) where + +import Data.Functor.Foldable +import Control.Monad.Free +import qualified Data.Map as M + +data LinExpr' t v a = + Lit t + | Var v + | Add a a + | Mul a a + | Negate a + deriving (Show, Eq, Functor) + +type LinExpr t v = Fix (LinExpr' t v) + +var = Fix . Var + +instance Num t => Num (LinExpr t v) where + a * b = Fix (Mul a b) + a + b = Fix (Add a b) + negate a = Fix (Negate a) + fromInteger a = Fix (Lit (fromInteger a)) + abs = undefined + signum = undefined + +consts :: Num t => LinExpr t v -> t +consts = cata consts' where + consts' (Negate a) = negate a + consts' (Lit a) = a + consts' (Var _) = 0 + consts' (Add a b) = a + b + consts' (Mul a b) = a * b + +getVar :: (Num t, Eq v) => v -> LinExpr t v -> t +getVar id x = cata getVar' x - consts x where + getVar' (Var x) | x == id = 1 + | otherwise = 0 + getVar' (Lit a) = a + getVar' (Add a b) = a + b + getVar' (Mul a b) = a * b + getVar' (Negate a) = negate a + +vars :: LinExpr t v -> [v] +vars = cata vars' where + vars' (Var x) = [x] + vars' (Add a b) = a ++ b + vars' (Mul a b) = a ++ b + vars' (Negate a) = a + vars' _ = [] + +varTerms eq = go eq' where + go [t] = t + go (t:ts) = Fix (Add t (go ts)) + go [] = Fix (Lit 0) + + eq' = zipWith (\v w -> Fix (Mul (Fix (Lit w)) (Fix (Var v)))) vs ws + vs = vars eq + ws = map (`getVar` eq) vs + +split :: (Num t, Eq v) => LinExpr t v -> (LinExpr t v, t) +split eq = (varTerms eq, consts eq) + +prettyPrint :: (Show t, Show v) => LinExpr t v -> String +prettyPrint = cata prettyPrint' where + prettyPrint' (Lit a) = show a + prettyPrint' (Mul a b) = concat ["(", a, "×", b, ")"] + prettyPrint' (Add a b) = concat ["(", a, "+", b, ")"] + prettyPrint' (Var x) = show x + +-- Monad for linear programs + +data LinProg' t v a = + Objective (LinExpr t v) a + | EqConstraint (LinExpr t v) (LinExpr t v) a + | LeqConstraint (LinExpr t v) (LinExpr t v) a + deriving (Show, Eq, Functor) + +type LinProg t v = Free (LinProg' t v) + +obj a = liftF (Objective a ()) +eq a b = liftF (EqConstraint a b ()) +leq a b = liftF (LeqConstraint a b ()) +geq b a = liftF (LeqConstraint a b ()) + +a =: b = eq a b +a <: b = leq a b +a >: b = geq a b -- cgit v1.2.3