-- basics def matmul [n][m][p] 'a (add: a -> a -> a) (mul: a -> a -> a) (zero: a) (A: [n][m]a) (B: [m][p]a) : [n][p]a = map (\A_row -> map (\B_col -> reduce add zero (map2 mul A_row B_col)) (transpose B)) A def matmul_f64 = matmul (+) (*) 0f64 def sum = reduce (+) 0f64 def dot u v = sum (map2 (*) u v) -- sets the last row to 1 def unitlst [n][m] (X: *[n][m]f64): *[n][m]f64 = X with [n-1] = tabulate m (const 1) def unitlstT [n][m] (X: *[n][m]f64): *[n][m]f64 = transpose (unitlst (transpose X)) -- Bregman generators def phi (z: f64) : f64 = z * f64.log z - z def psi [d] (x: [d]f64) : f64 = sum (map ((*x[d-1]) <-< phi <-< (/(f64.epsilon+x[d-1]))) x) def embed [n][d][k] (B: [n][k]f64) (U: [k][d]f64) : [n][d]f64 = let C = tabulate_2d k k (\i j -> (if i == j then 1f64 else 0f64) - f64.from_fraction 1 k) in (matmul_f64 (matmul_f64 (unitlstT (copy B)) C) U) def loss [n][d][k] (X: [n][d]f64) (B: [n][k]f64) (U: [k][d]f64) : f64 = let Y = map (map f64.exp) (embed B U) in sum (map2 (\x y -> - psi y - dot (map2 (-) x y) (vjp psi y 1)) X Y) def dloss [n][d][k] (X: [n][d]f64) (B: [n][k]f64) (U: [k][d]f64) : ([n][k]f64, [k][d]f64) = vjp (uncurry (loss X)) (B, U) 1 -- Approximate quantiles def quantile [n] (q: f64) (xs: [n]f64) : f64 = let (p, _, _) = loop (_, xs, idx) = (0/0, xs, f64.to_i64 (q*f64.from_fraction n 1)) while length xs > 1 do let pivot = head xs let (left, right) = partition (<=pivot) (tail xs) let m = 1+length left in if m > idx then (pivot, left, idx) else (pivot, right, idx - m) in p -- Optimiser def rmsprop [n] (iters: i32) (beta: f64) (par: [n]f64) (df: [n]f64 -> [n]f64) : [n]f64 = let step (i, par, s) = let d = df par let s' = map2 (\s x -> beta * s + (1-beta)*x**2) s d let par' = map3 (\x s d -> x - 1e-3 * d / (f64.epsilon + f64.sqrt s)) par s' d in (i-1, par', s') let (_, par, _) = iterate_until (\(i,_,_) -> i <= 0) step (iters, par, replicate n 0) in par def pca [n][d] (iters: i32) (k: i64) (X: [n][d]f64) : ([n][k]f64, [k][d]f64, f64) = let mX = sum (flatten X) let X' = map (map (/ mX)) X let fp x = x - f64.floor x let B = tabulate_2d n k (\i j -> if j == k-1 then 1 else 1e-3 * (fp (0.5 + 1.3247 * f64.from_fraction (i * k + j) 1) - 0.5)) let U = tabulate_2d k d (\i j -> 1e-3 * (fp (0.5 + 1.7548 * f64.from_fraction (i * k + j) 1) - 0.5)) let pack [n][d][k] (B: [n][k]f64) (U: [k][d]f64) : []f64 = flatten B ++ flatten U let unpack xs = let (a, b) = split (n*k) xs in (unflatten n k a, unflatten k d b) let df [m] (par: [m]f64) : [m]f64 = (uncurry pack <-< uncurry (dloss X') <-< unpack) par :> [m]f64 let init = flatten B ++ flatten U let par = rmsprop iters 0.999 init df let (Bf, Uf ) = unpack par in (Bf, Uf, loss X' Bf Uf) entry pcaWithQuantile [n][d] (iters: i32) (q: f64) (k: i64) (X: [n][d]f64) : ([n][k]f64, [d][k]f64, [n][d]f64, f64) = let qs = map (quantile q) X let Y = tabulate_2d n (d+1) (\i j -> if j == d then qs[i] else X[i][j]) let (B, U, l) = pca iters (1+k) Y let Y' = embed B U in (map (\x -> x[0:k]) B, (transpose U[0:k])[0:d], map (\x -> map (f64.- x[d]) x[0:d]) Y', l)