1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
|
{-# LANGUAGE ViewPatterns #-}
module Main where
import Data.Fixed (mod')
import Data.Foldable (toList)
import Data.List
import qualified Data.Map as M
import qualified Data.Vector.Unboxed as V
import Numeric.Log hiding (sum)
import Options.Applicative
import PPL
import System.Random (mkStdGen, setStdGen)
cumsum = scanl1 (+)
first f xs = snd . head . filter (f . fst) $ zip xs [0 ..]
stirling n = n * log n - n
pois lambda (fromIntegral -> k) = lambda' ** k' * Exp (negate lambda) / Exp (stirling k)
where
lambda' = Exp $ log lambda
k' = Exp $ log k
-- (infinite) binary trees
data Tree a = Empty | Tree a (Tree a) (Tree a)
deriving (Show)
instance Foldable Tree where
foldMap f t = bftrav [t]
where
bftrav [] = mempty
bftrav (Empty : ts) = bftrav ts
bftrav ((Tree a l r) : ts) = f a <> bftrav (ts <> [l, r])
-- Infinite trees from infinite lists
-- NB: it's harder to partition a list so that it folds back to
-- equivalence. It doesn't really matter here since we're only
-- unfolding random uniforms anyway.
treeFromList (x : xs) = Tree x (treeFromList lpart) (treeFromList rpart)
where
(lpart, rpart) = unzip $ partition xs
partition (a : b : xs) = (a, b) : partition xs
-- Constrain trees so leaves sum to node value
normTree :: Tree Double -> Tree Double
normTree (Tree x l r) = go $ Tree x l r
where
go (Tree x (Tree u l r) (Tree v l' r')) =
let s = x / (u + v)
in Tree x (go $ Tree (s * u) l r) (go $ Tree (s * v) l' r')
drawTreeProbs = toList . normTree . treeFromList <$> iid uniform
model xs = do
(clmuAcinar, clmuDuctal, params, clusters) <- sample $ do
-- Sample hyperparameters
a <- bounded 1 10
-- CRP style
dir <- cumsum <$> dirichletProcess a
rs <- iid uniform
clmuAcinar <- drawTreeProbs
clmuDuctal <- drawTreeProbs
let clusters = map (\r -> first (>= r) dir) rs
params = map (\i -> zip clmuAcinar clmuDuctal !! i) clusters
pure (clmuAcinar, clmuDuctal, params, clusters)
mapM_ scoreLog $ zipWith likelihood params (V.toList xs)
let cls = take (V.length xs) clusters
k = maximum cls + 1
pure (take k clmuAcinar, take k clmuDuctal, cls)
where
likelihood (ap, dp) (ac, ad, dc, dd) =
max (pois (fromIntegral ad * ap) ac) (pois (fromIntegral ad * ap / 2) ac)
* max (pois (fromIntegral dd * dp) dc) (pois (fromIntegral dd * dp / 2) dc)
-- Command line args
data Options = Options
{ seed :: Int,
nsamples :: Int,
mhfrac :: Double,
input :: FilePath,
propsPath :: FilePath,
clusterPath :: FilePath
}
main = run =<< execParser opts
where
opts =
info
(parser <**> helper)
(fullDesc <> progDesc "Infer a phylogeny from SNV calls in multiple samples" <> header "phylogey - Bayesian phylogeny inference")
parser =
Options <$> option auto (long "seed" <> short 's' <> help "random seed" <> showDefault <> value 42 <> metavar "INT")
<*> option auto (long "nsamples" <> short 'n' <> help "number of samples from posterior" <> value 100000 <> metavar "INT" <> showDefault)
<*> option probability (long "mhfrac" <> short 'm' <> help "Metropolis-Hastings mutation probability" <> value 0.3 <> metavar "(0,1]" <> showDefault)
<*> argument str (metavar "INPUT")
<*> argument str (metavar "PROPS")
<*> argument str (metavar "TREE")
probability = eitherReader $ \arg -> case reads arg of
[(r, "")] -> if r <= 1 && r > 0 then Right r else Left "mhfrac not a valid probability"
_ -> Left "mhfrac not a valid probability"
run opts = do
setStdGen . mkStdGen $ seed opts
(hdr : lines) <- lines <$> readFile (input opts)
let parsed = V.fromList $ map ((\[_, ac, ad, dc, dd] -> (dbl ac, dbl ad, dbl dc, dbl dd)) . words) lines
dbl = round . read :: String -> Int
((a, d, cl), _) <- foldl1' (\a c -> if mml a < mml c then a else c) . take (nsamples opts) <$> mh (mhfrac opts) (model parsed)
writeFile (propsPath opts) . unlines $ zipWith (\a b -> show a <> "," <> show b) a d
writeFile (clusterPath opts) . unlines $ map show cl
where
mml ((a, d, cl), lik) = sum (map (log . (+ 1)) a) + sum (map (log . (+ 1)) d) + sum (map (log . (+ 1)) tab) - sum (map stirling tab) - ln lik
where
tab = M.elems $ M.fromListWith (+) [(c, 1) | c <- cl]
|