{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE BlockArguments #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE TupleSections #-}

module PPL.Sampling
  ( mh,
    ssmh,
  )
where

import Control.DeepSeq
import Control.Exception (evaluate)
import Control.Monad.IO.Class
import Control.Monad.Trans.State
import Data.Bifunctor
import qualified Data.Map.Strict as M
import Data.Monoid
import GHC.Exts.Heap
import Numeric.Log
import PPL.Distr
import PPL.Internal
import qualified Streaming as S
import Streaming.Prelude (Of, Stream, yield)
import System.IO.Unsafe
import System.Random (StdGen, random, randoms)
import qualified System.Random as R
import Data.IORef
import Control.Monad
import Debug.Trace

mh :: (MonadIO m) => StdGen -> Double -> Meas a -> Stream (Of (a, Log Double)) m ()
mh g p m = do
    let (g0, g1) = R.split g
    omega <- liftIO $ newIORef (mempty, g0)
    let (x, w) = head $ samples m $ newTree omega
    step g1 omega x w
  where

    step !g0 !omega !x !w = do 
      let (Exp . log -> r, R.split -> (g1, g2)) = R.random g0
      omega' <- mutate g1 omega
      let (!x', !w') = head $ samples m $ newTree omega'
          ratio = w' / w
          (omega'', x'', w'') =
            if r < ratio
              then (omega', x', w')
              else (omega, x, w)
      yield (x'', w'')
      step g2 omega'' x'' w''
    
    mutate :: MonadIO m => StdGen -> IORef (M.Map [Int] Double, StdGen) ->  m (IORef (M.Map [Int] Double, StdGen))
    mutate g omega = do
      (m, g0) <- liftIO $ readIORef omega
      let (r:q:_) = R.randoms g
          ks = M.keys m
          k = ks !! floor (r * join traceShow (fromIntegral (length ks)))
          m' = M.insert k q m
      liftIO $ newIORef $ (m',g0)
      
     where
      go x = do
        g <- get
        let (r, g1) = R.random g
            (y, g2) = R.random g1
        if r < p 
          then do
            put g2
            pure y
          else do
            put g1
            pure x

-- Single site MH

-- Truncated trees
data TTree = TTree Bool [Maybe TTree] deriving (Show)

type Site = [Int]

trunc :: Tree -> IO TTree
trunc = truncTree . asBox
  where
    truncTree t =
      getBoxedClosureData' t >>= \case
        ConstrClosure _ [l, r] [] _ _ "Tree" ->
          getBoxedClosureData' l >>= \case
            ConstrClosure {dataArgs = [d], name = "D#"} ->
              TTree True <$> truncTrees r
            x -> error $ "truncTree:ConstrClosure:" ++ show x
        ConstrClosure _ [r] [d] _ _ "Tree" -> 
          TTree False <$> truncTrees r
        x -> error $ "truncTree:" ++ show x

    getBoxedClosureData' x =
      getBoxedClosureData x >>= \c -> case c of
        BlackholeClosure _ t -> getBoxedClosureData' t
        _ -> pure c

    truncTrees b =
      getBoxedClosureData' b >>= \case
        ConstrClosure _ [l, r] [] _ _ ":" ->
          getBoxedClosureData' l >>= \case
            ConstrClosure {name = "Tree"} ->
              ((:) . Just) <$> truncTree l <*>  truncTrees r
            _ -> (Nothing :) <$> truncTrees r
        _ -> pure []

trunc' t x w = unsafePerformIO $ do
  evaluate (rnf x)
  evaluate (rnf w)
  trunc t

sites :: Site -> TTree -> [Site]
sites acc (TTree eval ts) = (if eval then acc else mempty) : concat [sites (x : acc) t | (x, Just t) <- zip [0 ..] ts]

mutate = M.foldrWithKey go
  where
    go [] d (Tree _ ts) = Tree d ts
    go (n : ns) d (Tree v ts) = Tree v $ take n ts ++ go ns d (ts !! n) : drop (n + 1) ts

ssmh :: (Show a, NFData a, Monad m) => StdGen -> Meas a -> Stream (Of (a, Log Double)) m ()
ssmh g m = step t (mempty :: M.Map Site Double) (trunc' t0 x w) x w
  where
    (t0, t) = split $ randomTree g
    (x, w) = head $ samples m t0

    step !t !sub !tt !x !w = do
      let ss = sites [] tt
          (t1 : t2 : t3 : t4 : _) = splitTrees t
          i = floor $ draw t2 * (fromIntegral $ length ss) -- site to mutate
          sub' = M.insert (reverse $ ss !! i) (draw t3) sub
          t' = mutate t0 sub'
          (x', w') = head $ samples m t'
          tt' = trunc' t' x' w'
          ratio = w' / w
          (Exp . log -> r) = draw t4
          (sub'', tt'', x'', w'') =
            if r < ratio
              then (sub', tt', x', w')
              else (sub, tt, x, w)

      yield (x'', w'')
      step t1 sub'' tt'' x'' w''