1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
|
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE BlockArguments #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE TupleSections #-}
module PPL.Sampling
( mh,
)
where
import Control.DeepSeq
import Control.Exception (evaluate)
import Control.Monad.IO.Class
import Control.Monad.Trans.State
import Data.Bifunctor
import qualified Data.HashMap.Strict as M
import Data.Monoid
import GHC.Exts.Heap
import Numeric.Log
import PPL.Distr
import PPL.Internal
import qualified Streaming as S
import Streaming.Prelude (Of, Stream, yield)
import System.IO.Unsafe
import System.Random (StdGen, random, randoms)
import qualified System.Random as R
import Data.IORef
import Control.Monad
import Debug.Trace
mh :: (MonadIO m) => StdGen -> Double -> Meas a -> Stream (Of (a, Log Double)) m ()
mh g p m = do
let (g0, g1) = R.split g
omega <- liftIO $ newIORef (mempty, g0)
let (x, w) = head $ samples m $ newTree omega
step g1 omega x w
where
step !g0 !omega !x !w = do
let (Exp . log -> r, R.split -> (g1, g2)) = R.random g0
omega' <- mutate g1 omega
let (!x', !w') = head $ samples m $ newTree omega'
ratio = w' / w
(omega'', x'', w'') =
if r < ratio
then (omega', x', w')
else (omega, x, w)
yield (x'', w'')
step g2 omega'' x'' w''
mutate :: MonadIO m => StdGen -> IORef (M.HashMap [Int] Double, StdGen) -> m (IORef (M.HashMap [Int] Double, StdGen))
mutate g omega = do
(m, g0) <- liftIO $ readIORef omega
{-let (r:q:_) = R.randoms g
ks = M.keys m
k = ks !! floor (r * join traceShow (fromIntegral (length ks)))
m' = M.insert k q m
liftIO $ newIORef $ (m',g0)-}
liftIO $ newIORef $ (,g0) $ flip evalState g $ mapM go m
where
go x = do
g <- get
let (r, g1) = R.random g
(y, g2) = R.random g1
if r < p
then do
put g2
pure y
else do
put g1
pure x
|