aboutsummaryrefslogtreecommitdiff
path: root/src/PPL/Sampling.hs
blob: 59126ba71fa2ff14abec20f404d43167183a0098 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE BlockArguments #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE TupleSections #-}

module PPL.Sampling
  ( mh,
  )
where

import Control.DeepSeq
import Control.Exception (evaluate)
import Control.Monad.IO.Class
import Control.Monad.Trans.State
import Data.Bifunctor
import Data.Monoid
import GHC.Exts.Heap
import Numeric.Log
import PPL.Distr
import PPL.Internal
import qualified Streaming as S
import Streaming.Prelude (Of, Stream, yield)
import System.IO.Unsafe
import System.Random (StdGen, random, randoms)
import qualified System.Random as R
import Data.IORef
import Control.Monad
import qualified Data.Vector.Hashtables as H
import qualified Data.Vector.Unboxed as V
import Data.Word

mh :: (MonadIO m) => StdGen -> Double -> Meas a -> Stream (Of (a, Log Double)) m ()
mh g p m = do
    let (g0, g1) = R.split g
    hm <- liftIO $ H.initialize 0
    omega <- liftIO $ newIORef (hm, g0)
    let (x, w) = head $ samples m $ newTree omega
    step g1 omega x w
  where

    step !g0 !omega !x !w = do 
      let (Exp . log -> r, R.split -> (g1, g2)) = R.random g0
      omega' <- mutate g1 omega
      let (!x', !w') = head $ samples m $ newTree omega'
          ratio = w' / w
          (omega'', x'', w'') =
            if r < ratio
              then (omega', x', w')
              else (omega, x, w)
      yield (x'', w'')
      step g2 omega'' x'' w''
    
    mutate :: MonadIO m => StdGen -> IORef (HashMap Word64 Double, StdGen) ->  m (IORef (HashMap Word64 Double, StdGen))
    mutate g omega = liftIO $ do
      (m, g0) <- readIORef omega
      m' <- H.clone m
      ks <- H.keys m
      let (rs, qs) = splitAt (1 + floor (p * (n-1))) (R.randoms g)
          n = fromIntegral (V.length ks)
      zipWithM (\r q -> H.insert m' (ks V.! floor (r * n)) q) rs qs
      newIORef (m',g0)