aboutsummaryrefslogtreecommitdiff
path: root/Math/LinProg/LP.hs
blob: 1fc59e0f732a1fcc43015c5b5e5095408054f421 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
{-# LANGUAGE TemplateHaskell, FlexibleInstances, ScopedTypeVariables #-}
{-|
Module      : Math.LinProg.LP
Description : Compiles LP monad and expressions to a intermediate form.
Copyright   : (c) Justin Bedő, 2014
License     : BSD
Maintainer  : cu@cua0.org
Stability   : experimental

Linear programs that are specified using the monadic construction are compiled
to an intermediate data structure that's easier to work with.  The compiled
state groups objective terms and splits (in)equality constraints into LHS and
RHS terms, with the LHS containing all variables and the RHS terms containing
fixed constants.
-}
module Math.LinProg.LP (
  compile
  ,Equation
  ,CompilerS(..)
  ,objective
  ,equals
  ,leqs
) where

import Data.List
import Math.LinProg.Types
import Control.Lens
import Data.Maybe
import Control.Monad.Free

type Equation t v = (LinExpr t v, t) -- LHS and RHS

-- | Compiled state contatining the objective and (in)equality statements.
data CompilerS t v = CompilerS {
  _objective :: LinExpr t v
  ,_equals :: [Equation t v]
  ,_leqs :: [Equation t v]
} deriving (Eq)

$(makeLenses ''CompilerS)

-- | Compiles a linear programming monad to intermediate form which is easier to process
compile :: (Num t, Show t, Ord t, Eq v) => LinProg t v () -> CompilerS t v
compile ast = compile' ast initCompilerS where
  compile' (Free (Objective a c)) state = compile' c $ state & objective +~ a
  compile' (Free (EqConstraint a b c)) state = compile' c $ state & equals %~ (split (a-b):)
  compile' (Free (LeqConstraint a b c)) state = compile' c $ state & leqs %~ (split (a-b):)
  compile' _ state = state

  initCompilerS = CompilerS
    0
    []
    []

-- | Shows a compiled state as LP format.  Requires variable ids are strings.
instance (Show t, Num t, Ord t) => Show (CompilerS t String) where
  show s = unlines $ catMaybes [
      Just "Minimize"
      ,Just (showEq $ varTerms (s ^. objective))
      ,if hasST then Just "Subject to" else Nothing
      ,if hasEqs then Just (intercalate "\n" $ map (\(a, b) -> showEq a ++ " = " ++ show (negate b)) $ s ^. equals) else Nothing
      ,if hasUnbounded then Just (intercalate "\n" $ map (\(a, b) -> showEq a ++ " <= " ++ show (negate b)) unbounded) else Nothing
      ,if hasBounded then Just "Bounds" else Nothing
      ,if hasBounded then Just (intercalate "\n" $ map (\(l, v, u) -> show l ++ " <= " ++ v ++ " <= " ++ show u) bounded) else Nothing
    ]
    where
      getVars eq = zip vs ws
        where
          vs = vars eq
          ws = map (`getVar` eq) vs

      showEq = unwords . map (\(a, b) -> render b ++ " " ++ a) . getVars

      (bounded, unbounded) = findBounds $ s ^. leqs
      hasBounded = not (null bounded)
      hasUnbounded = not (null unbounded)
      hasEqs = not (null (s^.equals))
      hasST = hasUnbounded || hasEqs

      render x = (if x >= 0 then "+" else "") ++ show x

findBounds :: (Eq v, Num t, Ord t, Eq t) => [Equation t v] -> ([(t, v, t)], [Equation t v])
findBounds eqs = (mapMaybe bound singleTerms, eqs \\ filter (isBounded . head . vars . fst) singleTermEqs)
  where
    singleTermEqs = filter (\(ts, _) -> length (vars ts) == 1) eqs
    singleTerms = nub $ concatMap (vars . fst) singleTermEqs

    upperBound x = mapMaybe (\(a, c) -> let w = getVar x a in if w == 1 then Just (negate c) else Nothing) singleTermEqs
    lowerBound x = mapMaybe (\(a, c) -> let w = getVar x a in if w == -1 then Just c else Nothing) singleTermEqs

    bound v = bound' (lowerBound v) (upperBound v) where
      bound' [] _ = Nothing
      bound' _ [] = Nothing
      bound' ls us | l <= u = Just (l, v, u)
                   | otherwise = Nothing where
        l = maximum ls
        u = minimum us

    isBounded v = isJust (bound v)