aboutsummaryrefslogtreecommitdiff
path: root/Math/LinProg/LPSolve.hs
blob: 5299d9412cb9d06bd38eacd23bf581b19d2c6c30 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
{-# LANGUAGE ViewPatterns #-}
{-|
Module      : Math.LinProg.LPSolve
Description : Binding for solving LPs with lp_solve library.
Copyright   : (c) Justin Bedő, 2014
License     : BSD
Maintainer  : cu@cua0.org
Stability   : experimental

This module allows finding the solution to an LP using the lp_solve library.
The LP is specified using the monad and expressions in Math.LinProg.Types.
Note that the objective is minimised by default, so negation is needed to
maximise instead.
-}
module Math.LinProg.LPSolve (
  solve
  ,solveWithTimeout
  ,ResultCode(..)
) where

import Control.Applicative
import Control.Monad
import Data.List
import Control.Lens
import Math.LinProg.LPSolve.FFI hiding (solve)
import qualified Math.LinProg.LPSolve.FFI as F
import Math.LinProg.LP
import Math.LinProg.Types
import qualified Data.HashMap.Strict as M
import Data.Hashable
import Prelude hiding (EQ)

solve :: (Hashable v, Eq v, Ord v) => LinProg Double v () -> IO (Maybe ResultCode, [(v, Double)])
solve = solveWithTimeout 0

-- | Solves an LP using lp_solve.
solveWithTimeout :: (Hashable v, Eq v, Ord v) => Integer -> LinProg Double v () -> IO (Maybe ResultCode, [(v, Double)])
solveWithTimeout t (compile -> lp) = do
    model <- makeLP nconstr nvars
    case model of
      Nothing -> return (Nothing, [])
      Just m' -> with m' $ \m -> do
        setTimeout m t

        -- Eqs
        forM_ (zip [1..] $ lp ^. equals) $ \(i, eq) ->
          forM_ (varTerms (fst eq)) $ \(v, w) -> do
            let c = negate $ snd eq
            setMat m i (varLUT M.! v) w
            setConstrType m i EQ
            setRHS m i c
            return ()

        -- Leqs
        forM_ (zip [1+nequals..] $ lp ^. leqs) $ \(i, eq) ->
          forM_ (varTerms (fst eq)) $ \(v, w) -> do
            let c = negate $ snd eq
            setMat m i (varLUT M.! v) w
            setConstrType m i LE
            setRHS m i c
            return ()

        -- Ints
        forM_ (lp ^. ints) $ \v -> do
          setInt m (varLUT M.! v)

        -- Bins
        forM_ (lp ^. bins) $ \v -> do
          setBin m (varLUT M.! v)

        -- Objective
        forM_ (varTerms (lp ^. objective)) $ \(v, w) -> do
          void $ setMat m 0 (varLUT M.! v) w

        res <- F.solve m
        sol <- snd <$> getSol nvars m
        let vars = zip (M.keys varLUT) sol
        return (Just res, vars)
  where
    nconstr = length allConstr
    nvars = M.size varLUT
    nequals = length (lp ^. equals)

    allConstr = (lp ^. equals) ++ (lp ^. leqs)
    varLUT = M.fromList $ zip (sort $ nub $ concatMap (vars . fst) allConstr ++ vars (lp ^. objective)) [1..]

    with m f = do
      r <- f m
      freeLP m
      return r