aboutsummaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
-rw-r--r--src/PPL.hs5
-rw-r--r--src/PPL/Distr.hs100
-rw-r--r--src/PPL/Internal.hs81
-rw-r--r--src/PPL/Sampling.hs52
4 files changed, 238 insertions, 0 deletions
diff --git a/src/PPL.hs b/src/PPL.hs
new file mode 100644
index 0000000..21bb87c
--- /dev/null
+++ b/src/PPL.hs
@@ -0,0 +1,5 @@
+module PPL(module PPL.Internal, module PPL.Sampling, module PPL.Distr) where
+
+import PPL.Internal
+import PPL.Sampling
+import PPL.Distr
diff --git a/src/PPL/Distr.hs b/src/PPL/Distr.hs
new file mode 100644
index 0000000..797379b
--- /dev/null
+++ b/src/PPL/Distr.hs
@@ -0,0 +1,100 @@
+module PPL.Distr where
+
+import PPL.Internal
+import qualified PPL.Internal as I
+
+-- Acklam's approximation
+-- https://web.archive.org/web/20151030215612/http://home.online.no/~pjacklam/notes/invnorm/
+{-# INLINE probit #-}
+probit :: Double -> Double
+probit p
+ | p < lower =
+ let q = sqrt (-2 * log p)
+ in (((((c1 * q + c2) * q + c3) * q + c4) * q + c5) * q + c6)
+ / ((((d1 * q + d2) * q + d3) * q + d4) * q + 1)
+ | p < 1 - lower =
+ let q = p - 0.5
+ r = q * q
+ in (((((a1 * r + a2) * r + a3) * r + a4) * r + a5) * r + a6) * q
+ / (((((b1 * r + b2) * r + b3) * r + b4) * r + b5) * r + 1)
+ | otherwise = -probit (1 - p)
+ where
+ a1 = -3.969683028665376e+01
+ a2 = 2.209460984245205e+02
+ a3 = -2.759285104469687e+02
+ a4 = 1.383577518672690e+02
+ a5 = -3.066479806614716e+01
+ a6 = 2.506628277459239e+00
+
+ b1 = -5.447609879822406e+01
+ b2 = 1.615858368580409e+02
+ b3 = -1.556989798598866e+02
+ b4 = 6.680131188771972e+01
+ b5 = -1.328068155288572e+01
+
+ c1 = -7.784894002430293e-03
+ c2 = -3.223964580411365e-01
+ c3 = -2.400758277161838e+00
+ c4 = -2.549732539343734e+00
+ c5 = 4.374664141464968e+00
+ c6 = 2.938163982698783e+00
+
+ d1 = 7.784695709041462e-03
+ d2 = 3.224671290700398e-01
+ d3 = 2.445134137142996e+00
+ d4 = 3.754408661907416e+00
+
+ lower = 0.02425
+
+iid :: Prob a -> Prob [a]
+iid = sequence . repeat
+
+gauss = probit <$> uniform
+
+norm m s = (+ m) . (* s) <$> gauss
+
+-- Marsaglia's fast gamma rejection sampling
+gamma a = do
+ x <- gauss
+ u <- uniform
+ if u < 1 - 0.03331 * x ** 4
+ then pure $ d * v x
+ else gamma a
+ where
+ d = a - 1 / 3
+ v x = (1 + x / sqrt (9 * d)) ** 3
+
+beta a b = do
+ x <- gamma a
+ y <- gamma b
+ pure $ x / (x + y)
+
+bern p = (< p) <$> uniform
+
+binom n = fmap (length . filter id . take n) . iid . bern
+
+exponential lambda = negate . (/ lambda) . log <$> uniform
+
+geom :: Double -> Prob Int
+geom p = first 0 <$> iid (bern p)
+ where
+ first n (True : _) = n
+ first n (_ : xs) = first (n + 1) xs
+
+bounded lower upper = (+ lower) . (* (upper - lower)) <$> uniform
+
+bounded' lower upper = round <$> bounded (fromIntegral lower) (fromIntegral upper)
+
+cat :: [Double] -> Prob Int
+cat xs = search 0 (tail $ scanl (+) 0 xs) <$> uniform
+ where
+ search i [] _ = i
+ search i (x : xs) r
+ | x > r = i
+ | otherwise = search (i + 1) xs r
+
+dirichletProcess p = go 1
+ where
+ go rest = do
+ x <- beta 1 p
+ (x*rest:) <$> go (rest - x*rest)
diff --git a/src/PPL/Internal.hs b/src/PPL/Internal.hs
new file mode 100644
index 0000000..a729d3d
--- /dev/null
+++ b/src/PPL/Internal.hs
@@ -0,0 +1,81 @@
+{-# LANGUAGE TemplateHaskell #-}
+{-# LANGUAGE RankNTypes #-}
+{-# LANGUAGE GeneralizedNewtypeDeriving #-}
+
+module PPL.Internal (uniform, split, Prob(..), Meas, score, scoreLog, sample,
+randomTree, samples, mutateTree) where
+
+import Control.Monad
+import Control.Monad.Trans.Class
+import Control.Monad.Trans.Writer
+import Data.Monoid
+import qualified Language.Haskell.TH.Syntax as TH
+import Numeric.Log
+import System.Random hiding (uniform, split)
+import qualified System.Random as R
+import Data.Bifunctor
+import Control.Monad.IO.Class
+
+-- Reimplementation of the LazyPPL monads to avoid some dependencies
+
+data Tree = Tree Double [Tree]
+
+split :: Tree -> (Tree, Tree)
+split (Tree r (t : ts)) = (t, Tree r ts)
+
+{-# INLINE randomTree #-}
+randomTree :: RandomGen g => g -> Tree
+randomTree g = let (a, g') = random g in Tree a (randomTrees g')
+
+{-# INLINE randomTrees #-}
+randomTrees :: RandomGen g => g -> [Tree]
+randomTrees g = let (g1, g2) = R.split g in randomTree g1 : randomTrees g2
+
+{-# INLINE mutateTree #-}
+mutateTree :: RandomGen g => Double -> g -> Tree -> Tree
+mutateTree p g (Tree a ts) =
+ let (r, g1) = random g
+ (b, g2) = random g1
+ in Tree (if r < p then b else a) (mutateTrees p g2 ts)
+
+{-# INLINE mutateTrees #-}
+mutateTrees :: RandomGen g => Double -> g -> [Tree] -> [Tree]
+mutateTrees p g (t:ts) =
+ let (g1, g2) = R.split g
+ in mutateTree p g1 t : mutateTrees p g2 ts
+
+newtype Prob a = Prob {runProb :: Tree -> a}
+
+instance Monad Prob where
+ Prob f >>= g = Prob $ \t ->
+ let (t1, t2) = split t
+ (Prob g') = g (f t1)
+ in g' t2
+
+instance Functor Prob where fmap = liftM
+
+instance Applicative Prob where pure = Prob . const; (<*>) = ap
+
+uniform = Prob $ \(Tree r _) -> r
+
+newtype Meas a = Meas (WriterT (Product (Log Double)) Prob a)
+ deriving (Functor, Applicative, Monad)
+
+{-# INLINE score #-}
+score :: Double -> Meas ()
+score = scoreLog . Exp . log . max eps
+ where
+ eps = $(TH.lift (until ((== 1) . (1 +)) (/ 2) (1 :: Double))) -- machine epsilon, force compile time eval
+
+{-# INLINE scoreLog #-}
+scoreLog :: Log Double -> Meas ()
+scoreLog = Meas . tell . Product
+
+sample :: Prob a -> Meas a
+sample = Meas . lift
+
+{-# INLINE samples #-}
+samples :: forall a. Meas a -> Tree -> [(a, Log Double)]
+samples (Meas m) t = map (second getProduct) $ runProb f t
+ where
+ f = runWriterT m >>= \x -> (x:) <$> f
diff --git a/src/PPL/Sampling.hs b/src/PPL/Sampling.hs
new file mode 100644
index 0000000..a3f38db
--- /dev/null
+++ b/src/PPL/Sampling.hs
@@ -0,0 +1,52 @@
+{-# LANGUAGE ViewPatterns #-}
+
+module PPL.Sampling where
+
+import Control.Monad.IO.Class
+import Control.Monad.Trans.State
+import Data.Bifunctor
+import Data.Monoid
+import Numeric.Log
+import PPL.Distr
+import PPL.Internal hiding (split)
+import System.Random (getStdGen, newStdGen, random, randoms, split)
+
+importance :: MonadIO m => Int -> Meas a -> m [a]
+importance n m = do
+ newStdGen
+ g <- getStdGen
+ let ys = take n $ accumulate xs
+ max = snd $ last ys
+ xs = samples m $ randomTree g1
+ (g1, g2) = split g
+ let rs = randoms g2
+ pure $ flip map rs $ \r -> fst . head $ flip filter ys $ \(x, w) -> w >= Exp (log r) * max
+ where
+ cumsum = tail . scanl (+) 0
+ accumulate = uncurry zip . second cumsum . unzip
+
+mh :: MonadIO m => Double -> Meas a -> m [(a, Log Double)]
+mh p m = do
+ newStdGen
+ g <- getStdGen
+ let (g1, g2) = split g
+ (x, w) = head $ samples m t
+ t = randomTree g1
+ pure $ map (\(_, x, w) -> (x, w)) $ evalState (iterateM step (t, x, w)) g2
+ where
+ step (t, x, w) = do
+ g <- get
+ let (g1, g2) = split g
+ t' = mutateTree p g1 t
+ (x', w') = head $ samples m t'
+ ratio = w' / w
+ (Exp . log -> r, g3) = random g2
+ put g3
+ pure $
+ if r < ratio
+ then (t', x', w')
+ else (t, x, w)
+
+ iterateM f x = do
+ y <- f x
+ (y :) <$> iterateM f y