blob: 093e1021063bd1cc86c52692da973a9703ddabcf (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
|
module PPL.Distr where
import PPL.Internal
import qualified PPL.Internal as I
-- Acklam's approximation
-- https://web.archive.org/web/20151030215612/http://home.online.no/~pjacklam/notes/invnorm/
{-# INLINE probit #-}
probit :: Double -> Double
probit p
| p < lower =
let q = sqrt (-2 * log p)
in (((((c1 * q + c2) * q + c3) * q + c4) * q + c5) * q + c6)
/ ((((d1 * q + d2) * q + d3) * q + d4) * q + 1)
| p < 1 - lower =
let q = p - 0.5
r = q * q
in (((((a1 * r + a2) * r + a3) * r + a4) * r + a5) * r + a6) * q
/ (((((b1 * r + b2) * r + b3) * r + b4) * r + b5) * r + 1)
| otherwise = -probit (1 - p)
where
a1 = -3.969683028665376e+01
a2 = 2.209460984245205e+02
a3 = -2.759285104469687e+02
a4 = 1.383577518672690e+02
a5 = -3.066479806614716e+01
a6 = 2.506628277459239e+00
b1 = -5.447609879822406e+01
b2 = 1.615858368580409e+02
b3 = -1.556989798598866e+02
b4 = 6.680131188771972e+01
b5 = -1.328068155288572e+01
c1 = -7.784894002430293e-03
c2 = -3.223964580411365e-01
c3 = -2.400758277161838e+00
c4 = -2.549732539343734e+00
c5 = 4.374664141464968e+00
c6 = 2.938163982698783e+00
d1 = 7.784695709041462e-03
d2 = 3.224671290700398e-01
d3 = 2.445134137142996e+00
d4 = 3.754408661907416e+00
lower = 0.02425
iid :: Prob a -> Prob [a]
iid = sequence . repeat
gauss = probit <$> uniform
norm m s = (+ m) . (* s) <$> gauss
-- Marsaglia's fast gamma rejection sampling
gamma a = do
x <- gauss
u <- uniform
if u < 1 - 0.03331 * x ** 4
then pure $ d * v x
else gamma a
where
d = a - 1 / 3
v x = (1 + x / sqrt (9 * d)) ** 3
beta a b = do
x <- gamma a
y <- gamma b
pure $ x / (x + y)
beta' a b = do
p <- beta a b
pure $ p / (1-p)
bern p = (< p) <$> uniform
binom n = fmap (length . filter id . take n) . iid . bern
exponential lambda = negate . (/ lambda) . log <$> uniform
geom :: Double -> Prob Int
geom p = first 0 <$> iid (bern p)
where
first n (True : _) = n
first n (_ : xs) = first (n + 1) xs
bounded lower upper = (+ lower) . (* (upper - lower)) <$> uniform
bounded' lower upper = round <$> bounded (fromIntegral lower) (fromIntegral upper)
cat :: [Double] -> Prob Int
cat xs = search 0 (tail $ scanl (+) 0 xs) <$> uniform
where
search i [] _ = i
search i (x : xs) r
| x > r = i
| otherwise = search (i + 1) xs r
dirichletProcess p = go 1
where
go rest = do
x <- beta 1 p
(x*rest:) <$> go (rest - x*rest)
|