summaryrefslogtreecommitdiff
path: root/slides.tex
diff options
context:
space:
mode:
Diffstat (limited to 'slides.tex')
-rw-r--r--slides.tex124
1 files changed, 112 insertions, 12 deletions
diff --git a/slides.tex b/slides.tex
index 52f6f7a..8af2bff 100644
--- a/slides.tex
+++ b/slides.tex
@@ -29,6 +29,46 @@
\addbibresource{slides.bib}
\AtBeginBibliography{\small}
+%% Tikz relative positioning https://tex.stackexchange.com/questions/89588/positioning-relative-to-page-in-tikz
+\makeatletter
+\def
+\parsecomma#1,#2
+\endparsecomma{\def
+ \page@x{#1}
+ \def
+ \page@y{#2}}
+\tikzdeclarecoordinatesystem{page}{\parsecomma#1
+ \endparsecomma
+ \pgfpointanchor{current page}{north east}
+ \pgf@xc=
+ \pgf@x
+ \pgf@yc=
+ \pgf@y
+ \pgfpointanchor{current page}{south west}
+ \pgf@xb=
+ \pgf@x
+ \pgf@yb=
+ \pgf@y
+ \pgfmathparse{(\pgf@xc-
+ \pgf@xb)/2.*
+ \page@x+(
+ \pgf@xc+
+ \pgf@xb)/2.}
+ \expandafter
+ \pgf@x
+ \expandafter=
+ \pgfmathresult pt
+ \pgfmathparse{(\pgf@yc-
+ \pgf@yb)/2.*
+ \page@y+(
+ \pgf@yc+
+ \pgf@yb)/2.}
+ \expandafter
+ \pgf@y
+ \expandafter=
+ \pgfmathresult pt}
+\makeatother
+
\usepackage{acronym}
\usepackage{xspace}
\renewcommand*{\acsfont}[1]{\textsc{#1}}
@@ -59,7 +99,7 @@
\begin{frame}{Basics}
\begin{definition}[Compositional data] Data \(X \in \R^{n \times d}\) is compositional if rows \(\bx_i\) are in the simplex
- \[S^d=\{\,\bx \in \R^d : \forall j,x_j > 0 ; \sum_{j=1}^d x_j = \kappa\,\} \]
+ \[S^d=\{\,\bx \in \R^d : \forall j,x_j > 0 ; \sum_{j=1}^d x_j = \kappa\,\} \]
for constant \(\kappa > 0\).
\end{definition} Information is therefore given only by the ratios of components and any composition can be normalised to the standard simplex where \(\kappa = 1\) (c.f., dividing by library size).
\end{frame}
@@ -67,10 +107,10 @@
\begin{frame}{Isomorphisms to Euclidean vector spaces} The simplex forms a \(d-1\) dimensional Euclidean vector space
\footfullcite{Aitchison1982}:
\begin{definition}[\ac{alr}]
- \[\alr(\bx)_i = \log \frac{x_i}{x_0} \]
+ \[\alr(\bx)_i = \log \frac{x_i}{x_0} \]
\end{definition}
\begin{definition}[\ac{clr}]
- \[\clr(\bx)_i = \log \frac{x_i}{\left(\prod_{j=1}^d x_j\right)^{\frac 1 d}} \]
+ \[\clr(\bx)_i = \log \frac{x_i}{\left(\prod_{j=1}^d x_j\right)^{\frac 1 d}} \]
\end{definition}
\end{frame}
@@ -108,7 +148,7 @@
\begin{frame}{Traditional
\ac{pca}} Given \(\X\in \R^{n\times d}\) minimise loss
- \[\ell_{\textsc{pca}} \triangleq {\lVert \X - \V\A \rVert}^2_{\textrm{F}} \]
+ \[\ell_{\textsc{pca}} \triangleq {\lVert \X - \V\A \rVert}^2_{\textrm{F}} \]
s.t.
\(\V \in \R^{n \times k}\), \(\A \in \R^{k \times d}\), and \(\V^\intercal \V = \I\).
@@ -121,39 +161,99 @@
\ac{pca}}
\begin{definition}{Bregman Divergence} Let \(\varphi \colon \R^d \to \R\) be a smooth ($C^1$) convex function on convex set \(\Omega\).
The Bregman divergence \(D_\varphi\) with generator \(\varphi\) is
- \[ D_\varphi\left(\bu\,\Vert\,\bv\right) \triangleq \varphi(\bu)-\varphi(\bv)-\langle \nabla\varphi(\bv),\bu-\bv\rangle. \]
+ \[ D_\varphi\left(\bu\,\Vert\,\bv\right) \triangleq \varphi(\bu)-\varphi(\bv)-\langle \nabla\varphi(\bv),\bu-\bv\rangle. \]
\end{definition}
Denote the convex conjugate of \(\varphi\) as \(\varphi^*(\bu) \triangleq \sup_\bv\left\{\langle \bu,\bv\rangle-\varphi(\bv)\right\}\).
The exponential family
\ac{pca} is then given by minimising loss
- \[\ell_{\varphi} \triangleq D_\varphi\left(\X\,\Vert\,\nabla\varphi^*\left(\V\A\right)\right) \]
+ \[\ell_{\varphi} \triangleq D_\varphi\left(\X\,\Vert\,\nabla\varphi^*\left(\V\A\right)\right) \]
under the same constraints as previously, approximating \(\X \sim \nabla\varphi^*\left(\V\A\right)\).
\end{frame}
\begin{frame}{Aitchison's simplex and exponential
\ac{pca}} Aitchison's log-transformation is a dual affine coordinate space made explicit with
- \[\varphi(z) = z\log(z) - z \Leftrightarrow \varphi^*(z) = e^z, \]
+ \[\varphi(z) = z\log(z) - z \Leftrightarrow \varphi^*(z) = e^z, \]
but what about normalisation?
Consider
\ac{alr}:
- \[\alr(\bx) \triangleq x_0 \sum_{i=1}^d\varphi\left(\frac{x_i}{x_0}\right) \Leftrightarrow \alr^*(\bx) = x_0\sum_{i=1}^d e^{\frac{x_i}{x_0}} \]
+ \[\alr(\bx) \triangleq x_0 \sum_{i=1}^d\varphi\left(\frac{x_i}{x_0}\right) \Leftrightarrow \alr^*(\bx) = x_0\sum_{i=1}^d e^{\frac{x_i}{x_0}} \]
\end{frame}
- \begin{frame}
+ \begin{frame}{Scaled Bregman}
\begin{theorem}{Scaled Bregman
\footfullcite{nock2016scaled}} Let \(\varphi \colon \mathcal{X} \to \R\) be convex differentiable and \(g \colon \mathcal{X} \to \R\) be differentiable.
Then
- \[g(\bx)\cdot D_\varphi\left(\frac{\bx}{g(\bx)}\,\middle\Vert\,\frac{\by}{g(\by)}\right) = D_{\breve{\varphi}}\left(\bx\,\middle\Vert\,\by\right) \]
+ \[g(\bx)\cdot D_\varphi\left(\frac{\bx}{g(\bx)}\,\middle\Vert\,\frac{\by}{g(\by)}\right) = D_{\breve{\varphi}}\left(\bx\,\middle\Vert\,\by\right) \]
where
- \[\breve{\varphi} \triangleq g(\bx) \cdot \varphi\left(\frac{x}{g(\bx)}\right) \]
+ \[\breve{\varphi} \triangleq g(\bx) \cdot \varphi\left(\frac{x}{g(\bx)}\right) \]
\end{theorem}
Avalos et al.
\footfullcite{avalos2018representation}
- \ considered a relaxed form for \ac{clr} recently.
+ \ considered a relaxed form for
+ \ac{clr} recently.
+ \end{frame}
+
+ \begin{frame}{Activation-Induced Deaminase
+ \footfullcite{Gajula2014}}
+ \begin{tikzpicture}[remember picture,overlay]
+ \node[scale=0.85] at (page cs:0,0.08){\input{106-samples.tikz}};
+ \end{tikzpicture}
+ \end{frame}
+
+ \begin{frame}{Activation-Induced Deaminase}
+ \begin{tikzpicture}
+ \node at (page cs:-0.5,0.08){\input{106-Leu113.tikz}};
+ \node at (page cs:0.5,0.5){\includegraphics{gku689fig3-a.pdf}};
+ \node at (page cs:0.5,-0.25){\includegraphics{gku689fig3-key.pdf}};
+ \end{tikzpicture}
+ \end{frame}
+
+ \begin{frame}{Activation-Induced Deaminase}
+ \begin{tikzpicture}
+ \node at (page cs:-0.5,0.08){\input{106-Phe115.tikz}};
+ \node at (page cs:0.5,0.5){\includegraphics{gku689fig3-b.pdf}};
+ \node at (page cs:0.5,-0.25){\includegraphics{gku689fig3-key.pdf}};
+ \end{tikzpicture}
+ \end{frame}
+
+ \begin{frame}{Activation-Induced Deaminase}
+ \begin{tikzpicture}
+ \node at (page cs:-0.5,0.08){\input{106-Glu117.tikz}};
+ \node at (page cs:0.5,0.5){\includegraphics{gku689fig3-c.pdf}};
+ \node at (page cs:0.5,-0.25){\includegraphics{gku689fig3-key.pdf}};
+ \end{tikzpicture}
+ \end{frame}
+
+ \begin{frame}{Activation-Induced Deaminase}
+ \begin{tikzpicture}
+ \node at (page cs:-0.7,0.9){\textbf{Bregman}};
+ \node at (page cs:0.3,0.9){\textbf{+1-log
+ \ac{pca}}};
+ \node[scale=0.9] at (page cs:-0.5,0.08){\input{106-samples.tikz}};
+ \node[scale=0.9] at (page cs:0.5,0.08){\input{106-samples-log.tikz}};
+ \end{tikzpicture}
+ \end{frame}
+
+ \begin{frame}{\textsc{Erbb2}
+ \footfullcite{Elazar2016}}
+ \begin{tikzpicture}
+ \node[scale=0.8] at (page cs: -0.5,0){\input{helix-erbb2.tikz}};
+ \node at (page cs: 0.5,0.07){\includegraphics[width=0.4
+ \textwidth]{helix-erbb2-pub.jpg}};
+ \end{tikzpicture}
+ \end{frame}
+
+ \begin{frame}{\textsc{Brca1}
+ \footfullcite{Findlay2018}}
+ \begin{tikzpicture}[remember picture,overlay]
+ \node[inner sep=0pt] at (5,0.5){\input{brca1-density.tikz}};
+
+ \node[inner sep=0pt] at (11,1.25){\includegraphics{brca1-hist-pub.jpg}};
+ \end{tikzpicture}
\end{frame}
\end{document}