summaryrefslogtreecommitdiff
path: root/slides.tex
blob: 8af2bff3ab3321446dc09b47dcc44cd372157a06 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
\documentclass[aspectratio=169,UKenglish]{beamer}

\usetheme{metropolis}
\usepackage[sfdefault]{FiraSans}
\usefonttheme{professionalfonts}
\setbeamerfont{footnote}{size=
  \tiny}

\usepackage{microtype}

\usepackage{tikz}
\usetikzlibrary{shapes}
\usetikzlibrary{bayesnet}
\usepackage{stmaryrd}

\newcommand{\R}{\mathbb{R}}
\newcommand{\bx}{\mathbf{x}}
\newcommand{\by}{\mathbf{y}}
\newcommand{\bu}{\mathbf{u}}
\newcommand{\bv}{\mathbf{v}}
\newcommand{\X}{\mathbf{X}}
\newcommand{\V}{\mathbf{V}}
\newcommand{\A}{\mathbf{A}}
\newcommand{\I}{\mathbf{I}}
\DeclareMathOperator{\alr}{alr}
\DeclareMathOperator{\clr}{clr}

\usepackage[natbib=true,url=false,style=verbose-ibid]{biblatex}
\addbibresource{slides.bib}
\AtBeginBibliography{\small}

%% Tikz relative positioning https://tex.stackexchange.com/questions/89588/positioning-relative-to-page-in-tikz
\makeatletter
\def
\parsecomma#1,#2
\endparsecomma{\def
  \page@x{#1}
  \def
  \page@y{#2}}
\tikzdeclarecoordinatesystem{page}{\parsecomma#1
  \endparsecomma
  \pgfpointanchor{current page}{north east}
  \pgf@xc=
  \pgf@x
  \pgf@yc=
  \pgf@y
  \pgfpointanchor{current page}{south west}
  \pgf@xb=
  \pgf@x
  \pgf@yb=
  \pgf@y
  \pgfmathparse{(\pgf@xc-
    \pgf@xb)/2.*
    \page@x+(
    \pgf@xc+
    \pgf@xb)/2.}
  \expandafter
  \pgf@x
  \expandafter=
  \pgfmathresult pt
  \pgfmathparse{(\pgf@yc-
    \pgf@yb)/2.*
    \page@y+(
    \pgf@yc+
    \pgf@yb)/2.}
  \expandafter
  \pgf@y
  \expandafter=
  \pgfmathresult pt}
\makeatother

\usepackage{acronym}
\usepackage{xspace}
\renewcommand*{\acsfont}[1]{\textsc{#1}}
\newacro{dms}{Deep Mutational Scanning}
\newacro{clr}{Centred Log-Ratio}
\newacro{alr}{Additive Log-Ratio}
\newacro{pca}{Principal Component Analysis}
\newcommand{\dms}{\ac{dms}
  \xspace}

\author{Justin Bed\H{o}}
\title{Exploration of deep mutational scanning data with unsupervised methods}
\date{December 13, 2022}

\begin{document}

  \maketitle

  \section{Deep mutational scanning data}

  \begin{frame}{\dms data} Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
    Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
    Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
    Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
  \end{frame}

  \section{Compositional data}

  \begin{frame}{Basics}
    \begin{definition}[Compositional data] Data \(X \in \R^{n \times d}\) is compositional if rows \(\bx_i\) are in the simplex
      \[S^d=\{\,\bx \in \R^d : \forall j,x_j > 0 ; \sum_{j=1}^d x_j = \kappa\,\}  \]
      for constant \(\kappa > 0\).
    \end{definition} Information is therefore given only by the ratios of components and any composition can be normalised to the standard simplex where \(\kappa = 1\) (c.f., dividing by library size).
  \end{frame}

  \begin{frame}{Isomorphisms to Euclidean vector spaces} The simplex forms a \(d-1\) dimensional Euclidean vector space
    \footfullcite{Aitchison1982}:
    \begin{definition}[\ac{alr}]
      \[\alr(\bx)_i = \log \frac{x_i}{x_0}  \]
    \end{definition}
    \begin{definition}[\ac{clr}]
      \[\clr(\bx)_i = \log \frac{x_i}{\left(\prod_{j=1}^d x_j\right)^{\frac 1 d}}  \]
    \end{definition}
  \end{frame}

  \begin{frame}{\textsc{Pca} on
      \ac{dms} data}
    \begin{block}{Transformation approach}
      \begin{enumerate}
        \item Map
        \dms data to Euclidean space via
        \ac{alr} /
        \ac{clr}
        \item Apply standard
        \ac{pca}
      \end{enumerate}
    \end{block}
    \begin{block}{Problems}
      \begin{itemize}
        \item Zeros:
        \begin{enumerate}
          \item geometric mean is \(0\) \(\Rightarrow\)
          \ac{clr} is undefined
          \item
          \ac{alr} is undefined for unobserved components in the ref.
        \end{enumerate}
        \item Interpretation:
        \begin{enumerate}
          \item
          \ac{alr} is not isometry
          \item
          \ac{clr} is degenerate
        \end{enumerate}
      \end{itemize}
    \end{block}
  \end{frame}

  \begin{frame}{Traditional
      \ac{pca}} Given \(\X\in \R^{n\times d}\) minimise loss
    \[\ell_{\textsc{pca}} \triangleq {\lVert \X - \V\A \rVert}^2_{\textrm{F}}       \]
    s.t.
    \(\V \in \R^{n \times k}\), \(\A \in \R^{k \times d}\), and \(\V^\intercal \V = \I\).

    Has been generalised to exponential families
    \footfullcite{collins2001generalization} via Bregman divergences
    \footfullcite{Amari2016-ua}.
  \end{frame}

  \begin{frame}{Exponential family
      \ac{pca}}
    \begin{definition}{Bregman Divergence} Let \(\varphi \colon \R^d \to \R\) be a smooth ($C^1$) convex function on convex set \(\Omega\).
      The Bregman divergence \(D_\varphi\) with generator \(\varphi\) is
      \[ D_\varphi\left(\bu\,\Vert\,\bv\right) \triangleq \varphi(\bu)-\varphi(\bv)-\langle \nabla\varphi(\bv),\bu-\bv\rangle.       \]
    \end{definition}

    Denote the convex conjugate of \(\varphi\) as \(\varphi^*(\bu) \triangleq \sup_\bv\left\{\langle \bu,\bv\rangle-\varphi(\bv)\right\}\).
    The exponential family
    \ac{pca} is then given by minimising loss
    \[\ell_{\varphi} \triangleq D_\varphi\left(\X\,\Vert\,\nabla\varphi^*\left(\V\A\right)\right)       \]
    under the same constraints as previously, approximating \(\X \sim \nabla\varphi^*\left(\V\A\right)\).
  \end{frame}

  \begin{frame}{Aitchison's simplex and exponential
      \ac{pca}} Aitchison's log-transformation is a dual affine coordinate space made explicit with
    \[\varphi(z) = z\log(z) - z \Leftrightarrow \varphi^*(z) = e^z,    \]
    but what about normalisation?

    Consider
    \ac{alr}:
    \[\alr(\bx) \triangleq x_0 \sum_{i=1}^d\varphi\left(\frac{x_i}{x_0}\right) \Leftrightarrow \alr^*(\bx) = x_0\sum_{i=1}^d e^{\frac{x_i}{x_0}}  \]

  \end{frame}

  \begin{frame}{Scaled Bregman}
    \begin{theorem}{Scaled Bregman
        \footfullcite{nock2016scaled}} Let \(\varphi \colon \mathcal{X} \to \R\) be convex differentiable and \(g \colon \mathcal{X} \to \R\) be differentiable.
      Then
      \[g(\bx)\cdot D_\varphi\left(\frac{\bx}{g(\bx)}\,\middle\Vert\,\frac{\by}{g(\by)}\right) =  D_{\breve{\varphi}}\left(\bx\,\middle\Vert\,\by\right)  \]
      where
      \[\breve{\varphi} \triangleq g(\bx) \cdot \varphi\left(\frac{x}{g(\bx)}\right)   \]
    \end{theorem}

    Avalos et al.
    \footfullcite{avalos2018representation}
    \ considered a relaxed form for
    \ac{clr} recently.
  \end{frame}

  \begin{frame}{Activation-Induced Deaminase
      \footfullcite{Gajula2014}}
    \begin{tikzpicture}[remember picture,overlay]
      \node[scale=0.85] at (page cs:0,0.08){\input{106-samples.tikz}};
    \end{tikzpicture}
  \end{frame}

  \begin{frame}{Activation-Induced Deaminase}
    \begin{tikzpicture}
      \node at (page cs:-0.5,0.08){\input{106-Leu113.tikz}};
      \node at (page cs:0.5,0.5){\includegraphics{gku689fig3-a.pdf}};
      \node at (page cs:0.5,-0.25){\includegraphics{gku689fig3-key.pdf}};
    \end{tikzpicture}
  \end{frame}

  \begin{frame}{Activation-Induced Deaminase}
    \begin{tikzpicture}
      \node at (page cs:-0.5,0.08){\input{106-Phe115.tikz}};
      \node at (page cs:0.5,0.5){\includegraphics{gku689fig3-b.pdf}};
      \node at (page cs:0.5,-0.25){\includegraphics{gku689fig3-key.pdf}};
    \end{tikzpicture}
  \end{frame}

  \begin{frame}{Activation-Induced Deaminase}
    \begin{tikzpicture}
      \node at (page cs:-0.5,0.08){\input{106-Glu117.tikz}};
      \node at (page cs:0.5,0.5){\includegraphics{gku689fig3-c.pdf}};
      \node at (page cs:0.5,-0.25){\includegraphics{gku689fig3-key.pdf}};
    \end{tikzpicture}
  \end{frame}

  \begin{frame}{Activation-Induced Deaminase}
    \begin{tikzpicture}
      \node at (page cs:-0.7,0.9){\textbf{Bregman}};
      \node at (page cs:0.3,0.9){\textbf{+1-log
          \ac{pca}}};
      \node[scale=0.9] at (page cs:-0.5,0.08){\input{106-samples.tikz}};
      \node[scale=0.9] at (page cs:0.5,0.08){\input{106-samples-log.tikz}};
    \end{tikzpicture}
  \end{frame}

  \begin{frame}{\textsc{Erbb2}
      \footfullcite{Elazar2016}}
    \begin{tikzpicture}
      \node[scale=0.8] at (page cs: -0.5,0){\input{helix-erbb2.tikz}};
      \node at (page cs: 0.5,0.07){\includegraphics[width=0.4
          \textwidth]{helix-erbb2-pub.jpg}};
    \end{tikzpicture}
  \end{frame}

  \begin{frame}{\textsc{Brca1}
      \footfullcite{Findlay2018}}
    \begin{tikzpicture}[remember picture,overlay]
      \node[inner sep=0pt] at (5,0.5){\input{brca1-density.tikz}};

      \node[inner sep=0pt] at (11,1.25){\includegraphics{brca1-hist-pub.jpg}};
    \end{tikzpicture}
  \end{frame}

\end{document}