summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJustin Bedo <cu@cua0.org>2024-10-18 16:01:43 +1100
committerJustin Bedo <cu@cua0.org>2024-10-18 16:02:08 +1100
commit18cada8a178f1f5a1805a68692c6c09220b0ab9d (patch)
tree25328b50ea8db7f4159571bf0a23203cd6ed5522
parent188f305c35b46a2331027bc69c08b65a85e9516d (diff)
old changesHEADmaster
-rw-r--r--slides.tex62
-rw-r--r--supervised-pca.pngbin0 -> 44656 bytes
2 files changed, 22 insertions, 40 deletions
diff --git a/slides.tex b/slides.tex
index c908b50..8961267 100644
--- a/slides.tex
+++ b/slides.tex
@@ -89,17 +89,7 @@
\author{Justin Bed\H{o}}
\title{Representation learning of compositional counts: an exploration of deep mutational scanning data}
-\date{December 13, 2022}
-
-% Abstract:
-
-% Deep mutational scanning data provides important functional information on the % effects of protein variants. Many different aspects of proteins can be assayed, % many different experimental designs are possible, and many different scores are % computed leading to very heterogeneous data that is difficult to integrate.
-
-% In this talk I will explore a representational learning approach on raw count % data. This technique uses recent methods combining compositional data analysis % with a generalised form of principal component analysis to infer protein % representations without specific knowledge of the experimental design or assay % type.
-
-% Bio
-
-% Dr Justin Bedő is the Stafford Fox Centenary Fellow in Bioinformatics and % Computational Biology at the Walter and Eliza Hall Institute. He studied % computer science followed by a PhD in machine learning at the Australian % National University and was awarded his doctorate in 2009. He subsequently % worked as a researcher across both academia and industry at NICTA, IBISC % (Informatique, BioInformatique, Systèmes Complexes) CNRS, and IBM Research on % machine learning methods development and applications to biology before joining % the WEHI in 2016.
+\date{July 25, 2023}
\begin{document}
@@ -204,7 +194,7 @@
\end{tikzpicture}
\end{column}
\end{columns}
- \vspace{10pt} \(\Rightarrow\) Information is given only by the ratios of components and any composition can be normalised to the standard simplex where \(\kappa = 1\) (c.f., dividing by library size).
+ \vspace{10pt} \(\Rightarrow\) Information is given only by the ratios of components and any composition can be normalised to the standard simplex where \(\kappa = 1\) (divide by library size).
\end{frame}
\begin{frame}{Isomorphisms to Euclidean vector spaces} The simplex forms a \(d-1\) dimensional Euclidean vector space
@@ -296,7 +286,7 @@
\begin{itemize}
\item Zeros still a problem for
\ac{clr} as geometric mean is \(0\).
- \item[\(\Rightarrow\)] use median as gague function.
+ \item[\(\Rightarrow\)] use quantile as gague function.
\end{itemize}
\end{frame}
@@ -304,8 +294,12 @@
\begin{frame}{Activation-Induced Deaminase
\footfullcite{Gajula2014}}
- \begin{tikzpicture}[remember picture,overlay]
- \node[scale=0.85] at (page cs:0,0.08){\input{106-samples.tikz}};
+ \begin{tikzpicture}
+ \node at (page cs:-0.7,0.9){\textbf{Bregman}};
+ \node at (page cs:0.3,0.9){\textbf{+1-log
+ \ac{pca}}};
+ \node[scale=0.8] at (page cs:-0.5,0.08){\input{106-samples.tikz}};
+ \node[scale=0.8] at (page cs:0.5,0.08){\input{106-samples-log.tikz}};
\end{tikzpicture}
\end{frame}
@@ -333,16 +327,6 @@
\end{tikzpicture}
\end{frame}
- \begin{frame}{Activation-Induced Deaminase}
- \begin{tikzpicture}
- \node at (page cs:-0.7,0.9){\textbf{Bregman}};
- \node at (page cs:0.3,0.9){\textbf{+1-log
- \ac{pca}}};
- \node[scale=0.9] at (page cs:-0.5,0.08){\input{106-samples.tikz}};
- \node[scale=0.9] at (page cs:0.5,0.08){\input{106-samples-log.tikz}};
- \end{tikzpicture}
- \end{frame}
-
\begin{frame}{\textsc{Erbb2}
\footfullcite{Elazar2016}}
\begin{tikzpicture}
@@ -362,21 +346,15 @@
\end{frame}
\begin{frame}{\textsc{Brca1}: Positional effects}
- \begin{columns}[T]
- \begin{column}{.4
- \textwidth}
- \vspace{1cm}
- \[\V\A+\U^\intercal\Q\PP \]
- where \(\U \in \R^n\), \(\Q \in \R^l\), \(\PP \in \mathbb{2}^{l\times d}\)
- \end{column}
- \hfill
- \begin{column}{.58
- \textwidth}
- \begin{tikzpicture}
- \node[scale=.45]{\input{position.tikz}};
- \end{tikzpicture}
- \end{column}
- \end{columns}
+ \centering
+ \begin{tikzpicture}
+ \node[scale=.45]{\input{position.tikz}};
+ \end{tikzpicture}
+ \end{frame}
+
+ \begin{frame}{\textsc{Brca1}: Supervision}
+ \centering
+ \includegraphics[width=.7\linewidth]{supervised-pca.png}
\end{frame}
\begin{frame}{Acknowledgements}
@@ -400,4 +378,8 @@
\end{columns}
\end{frame}
+ \begin{frame}[standout]
+ Thank you!
+ \end{frame}
+
\end{document}
diff --git a/supervised-pca.png b/supervised-pca.png
new file mode 100644
index 0000000..4081d20
--- /dev/null
+++ b/supervised-pca.png
Binary files differ