diff options
| -rw-r--r-- | slides.tex | 62 | ||||
| -rw-r--r-- | supervised-pca.png | bin | 0 -> 44656 bytes | 
2 files changed, 22 insertions, 40 deletions
@@ -89,17 +89,7 @@  \author{Justin Bed\H{o}}  \title{Representation learning of compositional counts: an exploration of deep mutational scanning data} -\date{December 13, 2022} - -% Abstract: - -% Deep mutational scanning data provides important functional information on the % effects of protein variants. Many different aspects of proteins can be assayed, % many different experimental designs are possible, and many different scores are % computed leading to very heterogeneous data that is difficult to integrate. - -% In this talk I will explore a representational learning approach on raw count % data. This technique uses recent methods combining compositional data analysis % with a generalised form of principal component analysis to infer protein % representations without specific knowledge of the experimental design or assay % type. - -% Bio - -% Dr Justin Bedő is the Stafford Fox Centenary Fellow in Bioinformatics and % Computational Biology at the Walter and Eliza Hall Institute. He studied % computer science followed by a PhD in machine learning at the Australian % National University and was awarded his doctorate in 2009. He subsequently % worked as a researcher across both academia and industry at NICTA, IBISC % (Informatique, BioInformatique, Systèmes Complexes) CNRS, and IBM Research on % machine learning methods development and applications to biology before joining % the WEHI in 2016. +\date{July 25, 2023}  \begin{document} @@ -204,7 +194,7 @@          \end{tikzpicture}        \end{column}      \end{columns} -    \vspace{10pt} \(\Rightarrow\) Information is given only by the ratios of components and any composition can be normalised to the standard simplex where \(\kappa = 1\) (c.f., dividing by library size). +    \vspace{10pt} \(\Rightarrow\) Information is given only by the ratios of components and any composition can be normalised to the standard simplex where \(\kappa = 1\) (divide by library size).    \end{frame}    \begin{frame}{Isomorphisms to Euclidean vector spaces} The simplex forms a \(d-1\) dimensional Euclidean vector space @@ -296,7 +286,7 @@      \begin{itemize}        \item Zeros still a problem for        \ac{clr} as geometric mean is \(0\). -      \item[\(\Rightarrow\)] use median as gague function. +      \item[\(\Rightarrow\)] use quantile as gague function.      \end{itemize}    \end{frame} @@ -304,8 +294,12 @@    \begin{frame}{Activation-Induced Deaminase        \footfullcite{Gajula2014}} -    \begin{tikzpicture}[remember picture,overlay] -      \node[scale=0.85] at (page cs:0,0.08){\input{106-samples.tikz}}; +    \begin{tikzpicture} +      \node at (page cs:-0.7,0.9){\textbf{Bregman}}; +      \node at (page cs:0.3,0.9){\textbf{+1-log +          \ac{pca}}}; +      \node[scale=0.8] at (page cs:-0.5,0.08){\input{106-samples.tikz}}; +      \node[scale=0.8] at (page cs:0.5,0.08){\input{106-samples-log.tikz}};      \end{tikzpicture}    \end{frame} @@ -333,16 +327,6 @@      \end{tikzpicture}    \end{frame} -  \begin{frame}{Activation-Induced Deaminase} -    \begin{tikzpicture} -      \node at (page cs:-0.7,0.9){\textbf{Bregman}}; -      \node at (page cs:0.3,0.9){\textbf{+1-log -          \ac{pca}}}; -      \node[scale=0.9] at (page cs:-0.5,0.08){\input{106-samples.tikz}}; -      \node[scale=0.9] at (page cs:0.5,0.08){\input{106-samples-log.tikz}}; -    \end{tikzpicture} -  \end{frame} -    \begin{frame}{\textsc{Erbb2}        \footfullcite{Elazar2016}}      \begin{tikzpicture} @@ -362,21 +346,15 @@    \end{frame}    \begin{frame}{\textsc{Brca1}: Positional effects} -    \begin{columns}[T] -      \begin{column}{.4 -          \textwidth} -        \vspace{1cm} -        \[\V\A+\U^\intercal\Q\PP \] -        where \(\U \in \R^n\), \(\Q \in \R^l\), \(\PP \in \mathbb{2}^{l\times d}\) -      \end{column} -      \hfill -      \begin{column}{.58 -          \textwidth} -        \begin{tikzpicture} -          \node[scale=.45]{\input{position.tikz}}; -        \end{tikzpicture} -      \end{column} -    \end{columns} +     \centering +      \begin{tikzpicture} +        \node[scale=.45]{\input{position.tikz}}; +      \end{tikzpicture} +  \end{frame} + +  \begin{frame}{\textsc{Brca1}: Supervision} +    \centering +    \includegraphics[width=.7\linewidth]{supervised-pca.png}    \end{frame}    \begin{frame}{Acknowledgements} @@ -400,4 +378,8 @@      \end{columns}    \end{frame} +  \begin{frame}[standout] +    Thank you! +  \end{frame}   +  \end{document} diff --git a/supervised-pca.png b/supervised-pca.png Binary files differnew file mode 100644 index 0000000..4081d20 --- /dev/null +++ b/supervised-pca.png  | 
