summaryrefslogtreecommitdiff
path: root/slides.tex
diff options
context:
space:
mode:
authorJustin Bedo <cu@cua0.org>2022-11-23 11:22:12 +1100
committerJustin Bedo <cu@cua0.org>2022-12-05 16:50:43 +1100
commit5703e89a4780e9333e69cfad71fcf2447e02e023 (patch)
tree7e9fa499638b3b972e37b1af4efa3632dd0ad360 /slides.tex
parentb13c582bbb9619bf5869451e24f6e6dade95c849 (diff)
add bregman generator and scaled theorem for ALR
Diffstat (limited to 'slides.tex')
-rw-r--r--slides.tex38
1 files changed, 32 insertions, 6 deletions
diff --git a/slides.tex b/slides.tex
index 8bf6c26..52f6f7a 100644
--- a/slides.tex
+++ b/slides.tex
@@ -15,6 +15,7 @@
\newcommand{\R}{\mathbb{R}}
\newcommand{\bx}{\mathbf{x}}
+\newcommand{\by}{\mathbf{y}}
\newcommand{\bu}{\mathbf{u}}
\newcommand{\bv}{\mathbf{v}}
\newcommand{\X}{\mathbf{X}}
@@ -58,7 +59,7 @@
\begin{frame}{Basics}
\begin{definition}[Compositional data] Data \(X \in \R^{n \times d}\) is compositional if rows \(\bx_i\) are in the simplex
- \[S^d=\{\,\bx \in \R^d : \forall j,x_j > 0 ; \sum_{j=1}^d x_j = \kappa\,\} \]
+ \[S^d=\{\,\bx \in \R^d : \forall j,x_j > 0 ; \sum_{j=1}^d x_j = \kappa\,\} \]
for constant \(\kappa > 0\).
\end{definition} Information is therefore given only by the ratios of components and any composition can be normalised to the standard simplex where \(\kappa = 1\) (c.f., dividing by library size).
\end{frame}
@@ -66,10 +67,10 @@
\begin{frame}{Isomorphisms to Euclidean vector spaces} The simplex forms a \(d-1\) dimensional Euclidean vector space
\footfullcite{Aitchison1982}:
\begin{definition}[\ac{alr}]
- \[\alr(\bx)_i = \log \frac{x_i}{x_0} \]
+ \[\alr(\bx)_i = \log \frac{x_i}{x_0} \]
\end{definition}
\begin{definition}[\ac{clr}]
- \[\clr(\bx)_i = \log \frac{x_i}{\left(\prod_{j=1}^d x_j\right)^{\frac 1 d}} \]
+ \[\clr(\bx)_i = \log \frac{x_i}{\left(\prod_{j=1}^d x_j\right)^{\frac 1 d}} \]
\end{definition}
\end{frame}
@@ -107,7 +108,7 @@
\begin{frame}{Traditional
\ac{pca}} Given \(\X\in \R^{n\times d}\) minimise loss
- \[\ell_{\textsc{pca}} \triangleq {\lVert \X - \V\A \rVert}^2_{\textrm{F}} \]
+ \[\ell_{\textsc{pca}} \triangleq {\lVert \X - \V\A \rVert}^2_{\textrm{F}} \]
s.t.
\(\V \in \R^{n \times k}\), \(\A \in \R^{k \times d}\), and \(\V^\intercal \V = \I\).
@@ -120,14 +121,39 @@
\ac{pca}}
\begin{definition}{Bregman Divergence} Let \(\varphi \colon \R^d \to \R\) be a smooth ($C^1$) convex function on convex set \(\Omega\).
The Bregman divergence \(D_\varphi\) with generator \(\varphi\) is
- \[ D_\varphi\left(\bu\,\Vert\,\bv\right) \triangleq \varphi(\bu)-\varphi(\bv)-\langle \nabla\varphi(\bv),\bu-\bv\rangle. \]
+ \[ D_\varphi\left(\bu\,\Vert\,\bv\right) \triangleq \varphi(\bu)-\varphi(\bv)-\langle \nabla\varphi(\bv),\bu-\bv\rangle. \]
\end{definition}
Denote the convex conjugate of \(\varphi\) as \(\varphi^*(\bu) \triangleq \sup_\bv\left\{\langle \bu,\bv\rangle-\varphi(\bv)\right\}\).
The exponential family
\ac{pca} is then given by minimising loss
- \[\ell_{\varphi} \triangleq {D_\varphi\left(\X\,\Vert\,\nabla\varphi^*\left(\V\A\right)\right)}^2 \]
+ \[\ell_{\varphi} \triangleq D_\varphi\left(\X\,\Vert\,\nabla\varphi^*\left(\V\A\right)\right) \]
under the same constraints as previously, approximating \(\X \sim \nabla\varphi^*\left(\V\A\right)\).
\end{frame}
+ \begin{frame}{Aitchison's simplex and exponential
+ \ac{pca}} Aitchison's log-transformation is a dual affine coordinate space made explicit with
+ \[\varphi(z) = z\log(z) - z \Leftrightarrow \varphi^*(z) = e^z, \]
+ but what about normalisation?
+
+ Consider
+ \ac{alr}:
+ \[\alr(\bx) \triangleq x_0 \sum_{i=1}^d\varphi\left(\frac{x_i}{x_0}\right) \Leftrightarrow \alr^*(\bx) = x_0\sum_{i=1}^d e^{\frac{x_i}{x_0}} \]
+
+ \end{frame}
+
+ \begin{frame}
+ \begin{theorem}{Scaled Bregman
+ \footfullcite{nock2016scaled}} Let \(\varphi \colon \mathcal{X} \to \R\) be convex differentiable and \(g \colon \mathcal{X} \to \R\) be differentiable.
+ Then
+ \[g(\bx)\cdot D_\varphi\left(\frac{\bx}{g(\bx)}\,\middle\Vert\,\frac{\by}{g(\by)}\right) = D_{\breve{\varphi}}\left(\bx\,\middle\Vert\,\by\right) \]
+ where
+ \[\breve{\varphi} \triangleq g(\bx) \cdot \varphi\left(\frac{x}{g(\bx)}\right) \]
+ \end{theorem}
+
+ Avalos et al.
+ \footfullcite{avalos2018representation}
+ \ considered a relaxed form for \ac{clr} recently.
+ \end{frame}
+
\end{document}