summaryrefslogtreecommitdiff
path: root/slides.tex
diff options
context:
space:
mode:
authorJustin Bedo <cu@cua0.org>2022-12-07 15:36:01 +1100
committerJustin Bedo <cu@cua0.org>2022-12-09 10:46:11 +1100
commita6df2a5886383bbf1d782802bfd65fdcf4dc319f (patch)
treed890aba2f02a08ae91e983492558b4838b6e1555 /slides.tex
parentd35173389b0b9661046c91a1f4106c484316c53f (diff)
intro slides
Diffstat (limited to 'slides.tex')
-rw-r--r--slides.tex96
1 files changed, 78 insertions, 18 deletions
diff --git a/slides.tex b/slides.tex
index 8af2bff..f8121d9 100644
--- a/slides.tex
+++ b/slides.tex
@@ -29,7 +29,7 @@
\addbibresource{slides.bib}
\AtBeginBibliography{\small}
-%% Tikz relative positioning https://tex.stackexchange.com/questions/89588/positioning-relative-to-page-in-tikz
+% Tikz relative positioning https://tex.stackexchange.com/questions/89588/positioning-relative-to-page-in-tikz
\makeatletter
\def
\parsecomma#1,#2
@@ -79,27 +79,87 @@
\newcommand{\dms}{\ac{dms}
\xspace}
+\definecolor{cb1}{HTML}{1b9e77}
+\definecolor{cb2}{HTML}{d95f02}
+\definecolor{cb3}{HTML}{7570b3}
+
\author{Justin Bed\H{o}}
-\title{Exploration of deep mutational scanning data with unsupervised methods}
+\title{Representation learning of compositional counts: exploration of deep mutational scanning data}
\date{December 13, 2022}
\begin{document}
\maketitle
- \section{Deep mutational scanning data}
+ \begin{frame}{Variants of Uncertain Significance
+ \footfullcite{Liu2020}}
+ \begin{center}
+ \input{clinvar.tikz}
+ \end{center}
+ \end{frame}
- \begin{frame}{\dms data} Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
- Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
- Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
- Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
+ \begin{frame}{\dms}
+ \begin{quote} Deep mutational scanning is a method for systematically introducing mutations into a gene and then analyzing the resulting protein products to see how the changes affect the protein's function.
+ \end{quote}
+ \begin{enumerate}
+ \item Growing resource of functional data
+ \item MaveDB
+ \footfullcite{Esposito2019}
+ \footnote{\url{https://www.mavedb.org}} catalogs a number of datasets and provides easy access
+ \end{enumerate}
\end{frame}
- \section{Compositional data}
+ \begin{frame}{Deep Mutational Scanning: Overview
+ \footfullcite{Fowler2014}}
+ \begin{tikzpicture}
+ \node at (page cs:0,0.75){\(t_0\)};
+ \node at (page cs:0.53,0.75){\(t_1\)};
+ \node(a) at (page cs:-0.75,0.5){\includegraphics[width=0.3
+ \textwidth]{Protein-BRCA1.png}};
+ \node(b) at (page cs:0,0.5){\begin{tikzpicture}
+ \node[circle,draw,fill=cb1] at (page cs:-0.06,0){};
+ \node[circle,draw,fill=cb1] at (page cs:0,0){};
+ \node[circle,draw,fill=cb1] at (page cs:0.06,0){};
+ \node[circle,draw,fill=cb2] at (page cs:-0.06,0.1){};
+ \node[circle,draw,fill=cb2] at (page cs:0.06,0.1){};
+ \node[circle,draw,fill=cb2] at (page cs:0,0.1){};
+ \node[circle,draw,fill=cb3] at (page cs:-0.06,-0.1){};
+ \node[circle,draw,fill=cb3] at (page cs:0,-0.1){};
+ \node[circle,draw,fill=cb3] at (page cs:0.06,-0.1){};
+ \end{tikzpicture}};
+
+ \node(c) at (page cs:0.5,0.5){\begin{tikzpicture}
+ \node[circle,draw,fill=cb1] at (page cs:0.5,0){};
+ \node[circle,draw,fill=cb1] at (page cs:0.56,0){};
+ \node[circle,draw,fill=cb1] at (page cs:0.62,0){};
+ \node[circle,draw,fill=cb1] at (page cs:0.68,0){};
+ \node[circle,draw,fill=cb1] at (page cs:0.74,0){};
+ \node[circle,draw,fill=cb2] at (page cs:0.5,0.1){};
+ \node[circle,draw,fill=cb3] at (page cs:0.5,-0.1){};
+ \node[circle,draw,fill=cb3] at (page cs:0.56,-0.1){};
+ \end{tikzpicture}};
+
+ \node(d) at (page cs:0.2,-0.25){\includegraphics[width=0.3
+ \textwidth]{nextseq500.jpg}};
+
+ \draw[->] (a) -- (b) node[midway,above]{mutagenesis};
+ \draw[->] (b) -- (c) node[midway,above]{selection};
+ \draw[->] (b) -- (d);
+ \draw[->] (c) -- (d);
+ \end{tikzpicture}
+ \end{frame}
+
+ \begin{frame}{Deep Mutational Scanning: Integration issues}
+ \begin{enumerate}
+ \item Scores calculated a variety of ways, e.g., Rubin et al.
+ \footfullcite{Rubin2017}:
+ \[L_{v,t}=\log\left(\frac{(c_{v,t}+\frac12)(c_{wt,0}+\frac12)}{(c_{v,0}+\frac12)(c_{wt,t}+\frac12)}\right) \]
+ \end{enumerate}
+ \end{frame}
\begin{frame}{Basics}
\begin{definition}[Compositional data] Data \(X \in \R^{n \times d}\) is compositional if rows \(\bx_i\) are in the simplex
- \[S^d=\{\,\bx \in \R^d : \forall j,x_j > 0 ; \sum_{j=1}^d x_j = \kappa\,\} \]
+ \[S^d=\{\,\bx \in \R^d : \forall j,x_j > 0 ; \sum_{j=1}^d x_j = \kappa\,\} \]
for constant \(\kappa > 0\).
\end{definition} Information is therefore given only by the ratios of components and any composition can be normalised to the standard simplex where \(\kappa = 1\) (c.f., dividing by library size).
\end{frame}
@@ -107,10 +167,10 @@
\begin{frame}{Isomorphisms to Euclidean vector spaces} The simplex forms a \(d-1\) dimensional Euclidean vector space
\footfullcite{Aitchison1982}:
\begin{definition}[\ac{alr}]
- \[\alr(\bx)_i = \log \frac{x_i}{x_0} \]
+ \[\alr(\bx)_i = \log \frac{x_i}{x_0} \]
\end{definition}
\begin{definition}[\ac{clr}]
- \[\clr(\bx)_i = \log \frac{x_i}{\left(\prod_{j=1}^d x_j\right)^{\frac 1 d}} \]
+ \[\clr(\bx)_i = \log \frac{x_i}{\left(\prod_{j=1}^d x_j\right)^{\frac 1 d}} \]
\end{definition}
\end{frame}
@@ -148,7 +208,7 @@
\begin{frame}{Traditional
\ac{pca}} Given \(\X\in \R^{n\times d}\) minimise loss
- \[\ell_{\textsc{pca}} \triangleq {\lVert \X - \V\A \rVert}^2_{\textrm{F}} \]
+ \[\ell_{\textsc{pca}} \triangleq {\lVert \X - \V\A \rVert}^2_{\textrm{F}} \]
s.t.
\(\V \in \R^{n \times k}\), \(\A \in \R^{k \times d}\), and \(\V^\intercal \V = \I\).
@@ -161,24 +221,24 @@
\ac{pca}}
\begin{definition}{Bregman Divergence} Let \(\varphi \colon \R^d \to \R\) be a smooth ($C^1$) convex function on convex set \(\Omega\).
The Bregman divergence \(D_\varphi\) with generator \(\varphi\) is
- \[ D_\varphi\left(\bu\,\Vert\,\bv\right) \triangleq \varphi(\bu)-\varphi(\bv)-\langle \nabla\varphi(\bv),\bu-\bv\rangle. \]
+ \[ D_\varphi\left(\bu\,\Vert\,\bv\right) \triangleq \varphi(\bu)-\varphi(\bv)-\langle \nabla\varphi(\bv),\bu-\bv\rangle. \]
\end{definition}
Denote the convex conjugate of \(\varphi\) as \(\varphi^*(\bu) \triangleq \sup_\bv\left\{\langle \bu,\bv\rangle-\varphi(\bv)\right\}\).
The exponential family
\ac{pca} is then given by minimising loss
- \[\ell_{\varphi} \triangleq D_\varphi\left(\X\,\Vert\,\nabla\varphi^*\left(\V\A\right)\right) \]
+ \[\ell_{\varphi} \triangleq D_\varphi\left(\X\,\Vert\,\nabla\varphi^*\left(\V\A\right)\right) \]
under the same constraints as previously, approximating \(\X \sim \nabla\varphi^*\left(\V\A\right)\).
\end{frame}
\begin{frame}{Aitchison's simplex and exponential
\ac{pca}} Aitchison's log-transformation is a dual affine coordinate space made explicit with
- \[\varphi(z) = z\log(z) - z \Leftrightarrow \varphi^*(z) = e^z, \]
+ \[\varphi(z) = z\log(z) - z \Leftrightarrow \varphi^*(z) = e^z, \]
but what about normalisation?
Consider
\ac{alr}:
- \[\alr(\bx) \triangleq x_0 \sum_{i=1}^d\varphi\left(\frac{x_i}{x_0}\right) \Leftrightarrow \alr^*(\bx) = x_0\sum_{i=1}^d e^{\frac{x_i}{x_0}} \]
+ \[\alr(\bx) \triangleq x_0 \sum_{i=1}^d\varphi\left(\frac{x_i}{x_0}\right) \Leftrightarrow \alr^*(\bx) = x_0\sum_{i=1}^d e^{\frac{x_i}{x_0}} \]
\end{frame}
@@ -186,9 +246,9 @@
\begin{theorem}{Scaled Bregman
\footfullcite{nock2016scaled}} Let \(\varphi \colon \mathcal{X} \to \R\) be convex differentiable and \(g \colon \mathcal{X} \to \R\) be differentiable.
Then
- \[g(\bx)\cdot D_\varphi\left(\frac{\bx}{g(\bx)}\,\middle\Vert\,\frac{\by}{g(\by)}\right) = D_{\breve{\varphi}}\left(\bx\,\middle\Vert\,\by\right) \]
+ \[g(\bx)\cdot D_\varphi\left(\frac{\bx}{g(\bx)}\,\middle\Vert\,\frac{\by}{g(\by)}\right) = D_{\breve{\varphi}}\left(\bx\,\middle\Vert\,\by\right) \]
where
- \[\breve{\varphi} \triangleq g(\bx) \cdot \varphi\left(\frac{x}{g(\bx)}\right) \]
+ \[\breve{\varphi} \triangleq g(\bx) \cdot \varphi\left(\frac{x}{g(\bx)}\right) \]
\end{theorem}
Avalos et al.